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Abstract 

The Nelson-Siegel and the Svensson models are widely used in practice for fitting the term structure of 

interest rates. In this paper, a conditional ridge regression based approach is proposed to extrapolate the 
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year swap rate and its model-extrapolated counterpart, the method we suggest is more accurate to describe 

the long-term rates on the yield curve than traditional algorithms to estimate the Svensson model. The 
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1. Introduction 

Nelson and Siegel (1987) propose a parsimonious parametric specification to describe the shape of the 

term structure of interest rates. With only four parameters, the model is able to describe a whole family of 

empirically observed term structure shapes. Moreover, the additive terms in the model can be interpreted 

as a level, slope and curvature factor, commonly acknowledged through factor analysis (Litterman and 

Scheinkman, 1991). Svensson (1994) adds an additional curvature term to the Nelson-Siegel specification 

so that it can fit an even broader set of term structures. According to the Bank of International Settlements 

(2005), both models are heavily used by central banks. Finland and Italy were reported to use the Nelson-

Siegel model; Germany, Norway, Spain and Switzerland resorted to the Svensson model; and Belgium, 

France and Sweden opted for both depending on their fit.  

The econometric estimation of these models, however, copes with serious unreported or often loosely 

reported difficulties. Both models suffer from a high degree of nonlinearity as well as from potential 

multicollinearity. Not surprisingly, Barrett, Gosnell and Heuson (1995), Bolder and Stréliski (1999), 

Cairns and Pritchard (2001), Fabozzi, Martellini and Priaulet (2005), Gurkaynak, Sack and Wright (2006), 

de Pooter (2007) and Gilli, Grosse and Schumann (2010), all report numerical instabilities. Not only do 

parameter estimates turn out to be heavily dependent on starting values, but both models also produce time 

series of parameter estimates that are highly erratic over time. Linearizing the Nelson-Siegel model - by 

fixing the shape parameter at a level at which the factors are only moderately correlated - has become 

common practice (c.f. Diebold and Li, 2006 and Fabozzi, et al., 2005 for the Nelson-Siegel model). This 

approach, however, comes with a loss of flexibility in the shape parameter and might not necessarily be 

inspired by economic reasons. Annaert, Claes, De Ceuster and Zhang (2013) suggest a two-step procedure, 

which can be described as a conditional ridge regression, to cope with the reported problems for the 

Nelson-Siegel model. A grid search over the shape parameter is implemented using OLS. Conditional on 

the degree of multicollinearity implied by the choice of the ‘optimal’ shape parameter, the equation is re-

estimated using ridge regression. This simple approach allows the shape parameter to be freely estimated 

and alleviates the instability in parameter estimation caused by multicollinearity. At least for the Nelson-

Siegel model, they find a seriously improved fit, especially in the extrapolated long rates. 

Despite the work of Ferenczi and Werner (2006), the estimation of the Svensson model has not received a 

lot of attention. Even Ferenczi and Werner (2006) do not address the multicollinearity problem in the 

Svensson model. As the Svensson model shares all the problems reported in implementing the Nelson-

Siegel model, the conditional ridge regression approach can be thought of as a natural candidate to 

improve the estimated Svensson model coefficients and their stability. This paper assesses the estimation 

performance of the conditional ridge regression approach compared to other estimation procedures. We 
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provide empirical evidence that within sample, a two-dimensional grid search has the lowest mean 

absolute errors. However, an estimation procedure that selects - based on their in-sample performance - 

either the Svensson model, using a two-dimensional grid search and ridge regression, or the Nelson-Siegel 

model with ridge regression, renders the most accurate out-of-sample performance for the long end of the 

yield curve.  

Annaert et al. (2013) have shown the advantages of applying ridge regression on the Nelson-Siegel model, 

especially when extrapolating long-term rates. Here we take one step further to estimate the Svensson 

model with ridge regression.  

Our attention is paid on extrapolation of long-term rates with the Nelson-Siegel-Svensson models. We do 

this for several reasons.  

First of all, the long end of the yield curve is important to both monetary policy makers as well as 

companies whose main business deals with long-term financial products. For example, lowering short-

term interest rates or maintaining a low level of short-term rates, a common practice of monetary policy 

makers nowadays thanks to the financial crisis, forces investors to borrow at short-term rates to invest in 

longer-term investments, driving down long-term rates and boosting short-term rates, leading to a yield 

curve that is flattened or with a negative slope. Conventional wisdom tells us that a negative slope is 

considered as an indicator for economic recession. In this case, understanding how long-term rates behave 

can be used as a gauge to measure the potency of monetary policy actions on the general economy.  

As another example, mortgage loans can be viewed as options which are sensitive to long-term interest 

rate falling. When long-term interest rates go down, homeowners are likely to refinance their mortgage 

loans, increasing interest rate exposure of banks and other financial institutions who sell mortgage-related 

products.  

Long-term interest rates are also important for life insurance companies and pension funds who sell long-

term guarantee products. If a person purchases a life insurance policy at the age of 20, the policy would 

likely be associated with long-term rates up to 50 years or more. Besides, long-term rates are also 

important to the liability side of these companies as lower long-term rates will boost the present value of 

their liability, making them difficult to meet their solvency requirement. 

Nevertheless, unlike short-term rates such as the Euro Overnight Index Average (EONIA) rates that are 

observable from the money market, extrapolation is necessary to obtain long-term rates. For example, with 

Euro swap rates we are only able to bootstrap spot rates up to 10 years. For rates with maturity longer than 
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10 years, we need to extrapolate. For this reason, it is important to evaluate the extrapolation power of a 

model.  

Meanwhile, Díaz, Jareño and Navarro (2011) show that alternative yield curve estimation techniques also 

have a serious impact on the estimates of the term structure of volatilities. We show that the conditional 

ridge regression approach that we advance also provides a more accurate fit and one-day ahead forecasts 

for the long term interest rate volatilities. 

The paper is organized as follows. In Section 2 we introduce the extended Nelson-Siegel model, also 

known as the Svensson model. Next, in Section 3, we present eight possible estimation procedures. The 

data are described in Section 4. Section 5 discusses our empirical results. Finally, we conclude. 

 

2. The Svensson Model 

The Svensson model extends the Nelson-Siegel model with an extra factor that represents an additional 

hump/trough. The extra term allows describing an even broader family of yield curves than the Nelson-

Siegel model.  

The spot rate function reads 
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where  r   is the continuous spot rate with time to maturity  , 0 1 2 3 1 2, , , ,  and        are the 

coefficients, with 1 20, 0   . The first three components are exactly the same as those in the Nelson-

Siegel model. The constant can be interpreted as a level component, the exponential models the slope of 

the curve and the Laguerre function (i.e. the product of an exponential and a polynomial function) allows 

for the presence of a hump/trough. The last component, 3 3r , adds a second hump/trough to the standard 

Nelson-Siegel model. As 1 2 and    determine the location of the two humps/troughs, they are also called 

shape parameters. 
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Figure 1 depicts the four building blocks of the Svensson model. The curves 0 1 2 3, , ,  and r r r r  represent the 

level, slope, first and second curvature component of the spot rate curve. 

Figure 1: Decomposition of the Svensson model with the shape parameters fixed at 2 and 8 

 
Note: This figure shows the components of the Svensson model for the spot rate curve when the shape parameters are fixed at 2 

and 8. The curves 
0 1 2 3
, ,  and r r r r  represent the level, slope and two curvature components of the spot rate curve.  

 
As both ends of the two curvature components are zero, the Svensson model has the same boundary 

conditions as the Nelson-Siegel model, which means that   0 10r     and   0.r    These 

boundary conditions imply that the long-term interest rate level is 0 , while the short-end of the yield 

curve is 0 1  . As a result, the slope of a yield curve is given by 1 . A negative (positive) 1  means 

the term structure is upward (downward) sloping. The two shape parameters determine both the shape of 

the curvature components and the locations of humps/troughs of the term structure.  

 

3. Estimation Procedures 

3.1. Fitting the Term Structure of Interest Rates 

The Svensson model has been estimated using various econometric techniques, including maximum 

likelihood estimation (MLE), nonlinear least square (NLS), amongst others. Bolder and Stréliski (1999) 

use both NLS and MLE. Ramponi and Lucca (2003) resort to NLS. Ferenczi and Werner (2006) perform a 

two-step optimization procedure in which the two shape parameters are estimated simultaneously and then 

the Svensson model is linearized to obtain the other estimates. Gurkaynak et al. (2006) use MLE to 

minimize the sum of squared errors between the estimated and the actual prices of Treasury securities, 

where the prices are weighted by the inverse of their durations.  
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Since it is just an extension of the Nelson-Siegel model, the Svensson model shares all the reported 

estimation problems. Furthermore, in the Svensson model there may not only be correlation between the 

slope and two curvature factors but also the curvature components themselves can be correlated. In this 

paper, we compare eight methods to estimate the yield curve and its conditional volatilities. In two 

subsections, we discuss procedures to estimate the Nelson-Siegel model (Section 3.1.1) and the Svensson 

model (Section 3.1.2). 

 

3.1.1. Econometric Procedures for Estimating the Nelson-Siegel Model 

Nelson and Siegel (1987) linearize their model by fixing the shape parameter 1  which allows them to 

estimate their model using ordinary least squares (OLS). For a pre-defined grid on 1 , the OLS estimate 

with the lowest sum of squared errors is considered to be the best possible estimate. We refer to this 

procedure as a Grid Search (GS). The grid on 1  that we use, spans the interval (0, 10]. In order to speed 

up the estimation, the steps in the grid are being determined by MATLAB’s FMINBND routine which is 

based on a golden section search with parabolic interpolation.  

The degree of correlation between the regressors in the linearized Nelson-Siegel model, however, is 

extremely sensitive to the choice of 1 . As documented by Annaert et al. (2013), re-estimation of the 

model using ridge regression conditional upon the presence of multicollinearity, improves the estimation 

of the (extrapolated) short and long rate significantly. Hence, based on the GS estimated 1 , we measure 

the degree of multicollinearity using the condition number   (kappa).  

In a linear system y b X  where each independent variable in X  is standardized (centered and scaled), 

the condition number   is given as: 

   max

min

1,  
V

X
V

 (2) 

where V  are the eigenvalues of X X . If X  is well-conditioned (i.e. the regressors are uncorrelated), then 

the condition number is one, which implies that the variance of y  is explained equally by all the 

regressors. If correlation exists, then the condition number is no longer equal to 1 and the difference 

between the maximum and minimum eigenvalues grows as the collinearity increases. If the condition 

number is higher than the pre-defined threshold (e.g. 10 in Annaert et al., 2013), the model is re-estimated 
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using ridge regression. 1,2 We refer to this method as a Grid Search augmented with ridge regression (GS-

RR).3 

 

3.1.2. Econometric Procedures for Estimating the Svensson Model 

In analogy to the GS procedure for estimating the Nelson-Siegel model, the Svensson model can also be 

linearized by first fixing both shape parameters. Several procedures come to mind for fixing these 

parameters. Following Ferenczi and Werner (2006), we can linearize the Svensson model by performing 

an OLS-grid search on both λ1 and λ2 simultaneously. The parameter estimates resulting in the lowest sum 

of squared errors are deemed to be ‘optimal’. We shall refer to this method as a two-dimensional grid 

search (2dimGS). Notice that in the two-dimensional grid λ1 can be chosen to be equal to λ2. In that case 

the Svensson model collapses to the Nelson-Siegel model. In our empirical work, the grid on the shape 

parameters used spans the interval (0, 10]. The steps in the grid are determined by MATLAB’s 

LSQNONLIN routine.  

Alternatively, however, one could estimate λ1 first, by performing a GS estimation of the Nelson-Siegel 

model and then use this estimated λ1 in the Svensson model to perform a second one-dimensional grid 

search on λ2. This method we refer to as a double one-dimensional grid search (2×GS). Based on the same 

cut-off criterion on the condition-number as in GS-RR, we apply ridge regression whenever necessary in 

the 2×GS and the 2dimGS procedures. These procedures are labeled 2×GS-RR and 2dimGS-RR.  

The Svensson model adds flexibility to the Nelson-Siegel model in describing the shape of the yield curve. 

Following the principle of parsimony, however, we prefer models with fewer parameters. The grid search 

based Svensson models always yields a lower sum of squared errors (SSE) than those obtained from the 

Nelson-Siegel model, because of the additional degree of freedom by the second curvature component. 

However, this need not be the case for the procedures where we use ridge regression. As the Svensson 

model may experience more multicollinearity problems (compared to the Nelson-Siegel model), more bias 

has to be added into the estimates in order to lower their variance. To determine whether the Svensson 

model’s extra hump/trough is desirable, we finally compare the in-sample fitting errors produced by the 
                                                      

1 Appendix 1 explains the implementation of the ridge regression. 
2 A threshold of 10 and 20 are both tested in this paper. The results with a threshold of 20 are very similar to those 
reported here. They are available upon request. 
3 Diebold and Li (2006) and Fabozzi, et al. (2005) fix the shape parameter ߣଵ at 1.37 and 3 respectively so that no 
high degree of multicollinearity arises among the explanatory variables. As pointed out by Annaert et al. (2013), GS-
RR outperforms a fixed shape parameter algorithm in terms of fitting accuracy. The results based on fixed shape 
parameter of 1.37 and 3 are available upon request. 



7 
 

ridge regression procedure based on the Nelson-Siegel model (GS-RR) with the ones based on the 

Svensson model (2×GS-RR or 2dimGS-RR). Whichever model produces the lowest sum of in-sample 

errors is favored. These selection procedures we refer to as 2×GS/GS-RR and 2dimGS/GS-RR. Table 1 

summarizes the eight methods used in this paper. 

Table 1 Summary of estimation methods 

Name Algorithm 
GS Grid search on the Nelson-Siegel specification 
GS-RR GS augmented with ridge regression 
2×GS 1-dimensional grid search on Svensson with GS shape parameter 
2dimGS 2-dimensional grid search on the Svensson specification 
2×GS-RR 2×GS augmented with ridge regression 
2dimGS-RR 2dimGS augmented with ridge regression 
2×GS/GS-RR 2×GS-RR or GS-RR determined by the smaller in-sample sum of squared 

errors 
2dimGS/GS-RR 2dimGS-RR or GS-RR determined by the smaller in-sample sum of squared 

errors 
Note: This table summarizes the estimation methods that we use in this paper. 
 

3.1.3. Evaluation of the Estimation Procedures 

Using the procedures described in the previous subsections, we can fit a Svensson-type term structure 

model for the spot rate specification in Equation (1) for each day in our sample. Since we focus on 

extrapolation of long-term rates, in-sample fitting quality is not our main concern. We report the in-sample 

mean absolute error (MAE), but we put more focus on the ‘out-of-sample’ performance of the models. 

Following Annaert et al. (2013), we extrapolate from the fitted curves 30-year swap rates and compute the 

MAE vis-à-vis the contemporaneous 30-year ones. The model with the lowest MAE is considered to be 

the preferred model. 

 

3.2. Fitting the Term Structure of Conditional Volatilities 

To evaluate the usefulness of the proposed estimation procedures, we use the estimated term structures in 

two additional ways. We start by modeling the time series of the 30-year swap rate by fitting an 

exponential generalized autoregressive conditional heteroscedasticity (EGARCH) specification with 

student-t innovations. Díaz et al. (2011) compare several conditional volatility specifications to model the 

term structure of volatilities. They find that an EGARCH model with Gaussian innovations provides the 

lowest information loss in their dataset. We test GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) with 
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both Gaussian and student-t innovations. Since the EGARCH(1,1) model with student-t innovations 

provided the best fit for all estimation methods in our paper, we choose this specification in this paper.  

We proceed by fitting the same model through the time series of the extrapolated 30-year swap rates. By 

computing the MAE between the conditional volatility of the observed rates with the conditional volatility 

estimates on the extrapolated rates, we test the ability of the estimation procedures to capture the volatility 

dynamics at the long end of the yield curve. The model with the lowest MAE is considered as most 

accurate to describe conditional volatility. 

Finally, we forecast one-day ahead conditional volatilities for the 30-year swap rate. We evaluate the one-

day volatility forecasting ability of the estimation procedures. Again, the procedure with the lowest 

forecasting errors as measured by MAE is considered as the most appropriate one to fit the term structure 

of volatilities. 

 

4. Data 

We gathered the Euribor rates maturing from 1 week up to 12 months and Euro swap rates with maturities 

between 2 and 10 years. The 30-year Euro swap rates were also collected to assess the ‘extrapolation’ 

quality of the eight estimation procedures. The Euribor and Euro swap rates were retrieved from Thomson 

Reuters DataStream®. Our dataset spans the period from January 4, 1999 to May 24, 2011 and includes 3 

174 days. Following Annaert et al. (2013), we use the smoothed bootstrap procedure to construct the spot 

rate curve.  

Panel A in Table 2 presents the descriptive statistics of the time series of the (continuously compounded) 

spot rates. The panel shows that the volatility of the time series decreases from 1.31% for weekly rates to 

0.79% for the 10-year spot rate. The average spot rate varies from 2.71% for the one-week rate, to 4.33% 

for a 10-year maturity. Autocorrelation is close to 1 for the rates of all maturities, indicating a large 

persistence. Panel B in Table 2 summarizes the descriptive statistics of the spread between 10-year and 1-

week rates, between 5-year and 1-week rates, and between 10-year and 5-year rates. Generally speaking, 

the yield curve is upward sloping, with a larger spread between short- and mid-term yields. The low serial 

correlation with a lag of 255 days as well as the wide range of these spreads reflect the time-variation of 

the yield curve shape. 

 

Table 2 Descriptive statistics of spot rates (in percentage)  
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Panel A 

Maturity Mean Std. Dev. Min. Max.   5   25    255

1 Week 2.71 1.31 0.34 5.17 0.995 0.978 0.426 

1 Month 2.81 1.33 0.39 5.36 0.996 0.971 0.413 

2 Months 2.87 1.33 0.51 5.31 0.997 0.977 0.402 

3 Months 2.93 1.31 0.64 5.48 0.998 0.978 0.393 

4 Months 2.96 1.29 0.75 5.50 0.998 0.979 0.392 

5 Months 2.99 1.27 0.85 5.41 0.998 0.979 0.391 

6 Months 3.01 1.25 0.96 5.43 0.998 0.979 0.388 

7 Months 3.03 1.24 1.00 5.42 0.998 0.979 0.387 

8 Months 3.05 1.23 1.04 5.44 0.998 0.979 0.385 

9 Months 3.07 1.22 1.10 5.43 0.998 0.979 0.382 

10 Months 3.09 1.21 1.13 5.44 0.998 0.979 0.380 

11 Months 3.10 1.20 1.17 5.45 0.998 0.978 0.377 

12 Months 3.12 1.19 1.22 5.45 0.998 0.978 0.373 

2 Years 3.25 1.10 1.21 5.43 0.995 0.970 0.423 

3 Years 3.46 1.01 1.35 5.51 0.994 0.966 0.431 

4 Years 3.63 0.95 1.53 5.56 0.994 0.963 0.442 

5 Years 3.78 0.90 1.71 5.61 0.993 0.962 0.456 

6 Years 3.92 0.87 1.87 5.69 0.993 0.962 0.475 

7 Years 4.04 0.84 2.02 5.75 0.993 0.962 0.495 

8 Years 4.15 0.82 2.15 5.82 0.993 0.963 0.514 

9 Years 4.25 0.81 2.26 5.89 0.992 0.963 0.529 

10 Years 4.33 0.79 2.35 5.96 0.992 0.963 0.539 

Panel B 

Spread Mean Std. Dev. Min. Max. 
 5    25    255  

10y – 1w 1.62 0.86 -0.67 3.40 0.986 0.942 0.166

5y – 1w 1.07 0.69 -0.83 2.68 0.977 0.909 0.007

10y – 5y 0.55 0.26 -0.22 1.04 0.987 0.943 0.362
Note: Panel A reports summary statistics of bootstrapped spot rates. Panel B reports summary statistics of the spreads between 
10-year and 1-week rates, 5-year and 1-week rates, and 10-year and 5-year rates. Spot rates are expressed in percentage with 
continuous compounding. The sample period runs from January 4, 1999 to May 24, 2011, totaling to 3174 days. The spot rates 
with maturities less than one year are retrieved from the Euribor rates, whereas those with a maturity of more than one year are 
bootstrapped from Euro swap rates.   n  is the n-day lag autocorrelation. 

 

5. Empirical Comparison of the Estimation Methods 

As described in Section 3, we evaluate both the level (Section 5.1) and the conditional volatility (Section 

5.2) of the extrapolated long term rates as proxied by the 30-year swap rate. The conditional volatility is 

evaluated both on the basis of the contemporaneous fit of the proxies with the observed rates as on the 

forecasting ability of the different procedures. 
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5.1. Fitting the Term Structure of Interest Rates 

Although we put less emphasis on the in-sample fitting errors, we still report them (Subsection 5.1.1). 

Subsection 5.1.2 discusses the accuracy and economic attractiveness of the extrapolated long rates. 

 

 5.1.1. In-Sample Fitting Errors 

Table 3 shows the in-sample MAE for all estimation procedures. Thanks to the additional parameters in 

the Svensson model and the flexibility of a 2-dimensional grid search, the 2dimGS returns the lowest in-

sample MAE in 18 out of 22 cases. This results across all maturities in an average MAE of a mere 1.94 

basis points. Taking the GS - that Nelson and Siegel (1987) originally used - as our benchmark, the 

2dimGS MAE shows an improvement of respectively 10.96 basis points and 2.67 basis points for the 1-

week and the 10-year rates. The overall average MAE decreases by 61%.  
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Table 3 In-sample MAE between estimated rates from Svensson-type models and market data (in basis points) 

 
GS GS-RR 2×GS 2dimGS 

2×GS 
-RR 

2dimGS-RR 2×GS/GS-RR 2dimGS/GS-RR

1 Week 15.32+ 14.40 4.94 4.36* 4.90 7.41 4.98 6.79
1 Month 10.36+ 9.66 5.17 4.94* 5.58 6.05 5.53 6.43
2 Months 5.65+ 5.32 3.60 3.38* 3.92 4.06 3.87 4.29
3 Months 3.86 4.15+ 2.72* 2.75 3.03 2.94 3.00 3.17
4 Months 3.54 3.85+ 2.36 2.09* 2.28 2.29 2.28 2.24
5 Months 3.94 4.22+ 2.21 2.01* 2.05 2.36 2.07 2.24
6 Months 4.70 4.87+ 1.90 1.84* 2.10 2.72 2.10 2.68
7 Months 4.63 4.70+ 1.49* 1.56 1.72 2.54 1.68 2.49
8 Months 4.70+ 4.68 1.12* 1.26 1.51 2.43 1.41 2.37
9 Months 4.96+ 4.84 1.23 1.02* 1.72 2.44 1.57 2.50
10 Months 4.98+ 4.78 1.69 1.24* 2.08 2.63 1.93 2.74
11 Months 5.11+ 4.85 2.27 1.84* 2.65 2.96 2.47 3.18
12 Months 5.45+ 5.14 3.03 2.63* 3.38 3.49 3.18 3.80
2 Years 6.39 7.72+ 4.21 2.99* 6.33 6.10 6.28 5.53
3 Years 5.67 7.42+ 2.01 1.74* 4.63 5.61 4.59 4.46
4 Years 4.63 6.46+ 0.90* 1.08 3.63 5.30 3.56 3.44
5 Years 3.55 5.07+ 1.35 1.12* 2.89 4.72 2.79 3.13
6 Years 2.62 3.15+ 1.51 1.22* 1.91 2.99 1.88 2.25
7 Years 1.33 1.21 1.19 0.90* 1.33 1.32 1.39+ 1.19
8 Years 1.48 2.16 0.89 0.72* 2.15 2.87+ 1.99 1.70
9 Years 2.51 4.28 0.64 0.61* 3.91 5.60+ 3.33 3.28
10 Years 3.97 6.31 1.57 1.30* 5.64 8.27+ 4.71 4.97

Average 4.97 5.42+ 2.18 1.94* 3.15 3.96 3.03 3.40 
Note: The sample period runs from January 4, 1999 to May 24, 2011. The dataset used to estimate the parameters is composed by 1-week, 1- to 12-month, and 2- to 10-year spot 
rates. * This approach yields the lowest MAE for this time to maturity. + This approach yields the highest MAE for this time to maturity. For a summary of the estimation 
procedures, see Table 1. 
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Only the GS-RR performs worse than Nelson and Siegel’s original GS in-sample, due to the bias added by 

the ridge regression.  

 

5.1.2. Out-of-Sample Fit and Fitting Errors 

Based on the in-sample MAE, the 2dimGS seems to be the most accurate model to describe the yield 

curve. However, as ridge regression introduces bias into OLS, in-sample fit is not a ‘fair’ measure of 

comparison, not to mention that our main concern is on extrapolation of the long end of the yield curve. 

We use the same procedure as in Annaert et al. (2013) to generate 30-year swap rates and compute the 

MAE of each estimation procedure.  

Table 4 summarizes the descriptive statistics on extrapolated 30-year swap rates based on all eight models. 

For all the models, the extrapolated 30-year swap rates seem to be in line with the market observed ones. 

Table 4 Descriptive statistics on extrapolated 30-year swap rates (in percentage)  

Model Mean Std. Dev. Skew. Kurtosis Min. Max. 

Observed rates 4.61 0.79 -0.03 2.23 2.53 6.18

GS 4.69 0.82 0.13 2.17 2.55 6.92

GS-RR 4.58 0.77 -0.01 2.15 2.50 6.11

2×GS 4.88 0.86 0.19 1.99 2.28 7.39

2dimGS 4.74 0.80 0.17 2.10 2.77 7.27

2×GS-RR 4.52 0.71 0.34 2.16 2.92 6.06

2dimGS-RR 4.44 0.80 0.01 2.58 2.14 6.12

2×GS/GS-RR 4.62 0.73 0.13 2.02 2.92 6.11

2dimGS/GS-RR 4.57 0.76 0.06 2.20 2.50 6.12
Note: Interest rates are expressed in percentage with continuous compounding. The sample runs from January 4, 1999 to May 24, 
2011, totaling 3174 days. The 30-year swap rates based on various estimation procedures are summarized in this table. In the 
first row, the descriptive statistics on the observed market rates are reported.   
 

Table 5 shows the MAE, the mean squared errors and the bias decomposition in the extrapolated 30-year 

swap rates. The original Nelson and Siegel grid search shows a MAE of 27.01 basis points for the 30-year 

swap rate. The inclusion of an extra hump factor in the Nelson-Siegel model generally pays off in terms of 

MAE. Caution is however warranted. The MAE for the long rate using the 2×GS procedure is almost 

double the size of the GS. Augmenting the GS with a ridge regression seems to alleviate that problem. 

Notice that the 2dimGS/GS-RR procedure has MAE of 11.61 basis points for the long rates, which implies 

an improvement of more than 50% vis-à-vis the GS. 
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Table 5 also presents the mean squared errors (MSE) and the bias resulting from the Theil-decomposition 

(1967). MSEs lead to the identical conclusion. The 2dimGS/GS-RR seems to be the best performing 

model in extrapolating the long end of the yield curve.  The bias introduced by 2dimGS/GS-RR is less 

than both the 2dimGS and 2dimGS-RR.  

Table 5 Out-of-sample fitting errors for 30-year swap rates 

Model GS GS-RR 2×GS 2dimGS 2×GS-RR 2dimGS-RR 
2×GS/ 
GS-RR 

2dimGS/ 
GS-RR 

MAEs (bps) 27.01 13.51 47.74+ 18.12 23.29 20.13 14.50 11.61* 

MSEs (10-4) 23.80 3.49 43.21+ 8.31 8.25 6.72 4.13 2.56* 

Bias (10-4) 7.93 2.24 27.19+ 13.03 9.12 16.36 0.96* 4.02 
Note: Out-of-sample mean absolute errors, the mean squared errors and the bias decomposition based on mean squared errors 
between produced data from Nelson-Siegel and Svensson and empirical data are presented. The dataset used to estimate the 
parameters is composed by 1-week, 1- to 12-month, and 2- to 10- year spot rates. * This approach yields the lowest value for this 
time to maturity. + This approach yields the highest value for this time to maturity. 
 
 

5.2. Fitting and Forecasting the Term Structure of Volatilities 

5.2.1. Fitting and Forecasting Errors 

After analyzing the impact of these estimation procedures on the yield curve itself, we also examine their 

ability to fit and forecast the term structure of interest rate volatilities. This section discusses the behavior 

of the long rate volatility. We first calculate the mean absolute errors between the time series of 

conditional volatilities from market observed and model implied 30-year swap rates. Next, we forecast 

one-day ahead conditional volatilities. 

Table 6 presents the MAE of the conditional volatility estimated on extrapolated 30-year rates from the 

Nelson-Siegel-Svensson-type models and on 1-day-ahead forecast of the conditional volatility of 30-year 

swap rates.  

Focusing again on the mean absolute fitting errors and using the GS as benchmark, the MAE amounts to 

20.14 basis points for the 30-year swap rate. 2×GS yields the both the highest fitting errors and forecasting 

errors. 2dimGS/GS-RR, GS-RR and 2×GS/GS-RR strongly reduce the MAE. Here the method 

2dimGS/GS-RR has the lowest fitting errors with an MAE of only 9.41 basis points. 

 

 



14 
 

Table 6 MAE’s on conditional volatility fit and forecasts (in basis points)  

Model GS 
GS-
RR 

2×GS 2dimGS 2×GS-RR 
2dimGS-
RR 

2×GS/ 
GS-RR 

2dimGS/
GS-RR 

Fitting errors 20.14 12.06 73.56+ 25.18 43.91 24.45 13.59 9.41* 

Forecasting errors 30.39 20.62 55.27+ 28.15 34.41 28.00 25.35 13.85* 
Note: MAE’s between the conditional volatility estimated on extrapolated 30-year rates derived from Svensson-type models and 
their empirical counterparts are reported as fitting errors. MAE’s between one-day-ahead conditional volatility forecasts 
estimated on extrapolated 30-year rates derived from Svensson-type models and their empirical counterparts. The dataset used to 
estimate the parameters is composed by 1-week, 1- to 12-month, and 2- to 10-year spot rates. * This approach yields the lowest 
value for this time to maturity. + This approach yields the highest value for this time to maturity. 
 

Also in Table 6, we evaluate the ability of the estimation procedures to forecast one-day-ahead dynamics. 

We start by estimating a separate student-t-EGARCH(1,1) model for the 30-year swap rates on a training 

period of 2000 days. Next, we forecast the conditional volatilities one-day ahead and we compare the 

forecasts between the volatility of the extrapolated and observed rates on the same day. We have 3174 

days in our sample, which means that the forecasts run from day 2001 to day 3174, totaling 1173 days. 

Every day we re-estimate the EGARCH models using expanding windows. 

The GS shows a MAE of 30.39 basis points for the 30-year swap rate. GS-RR only improves the 

forecasting ability of the 30-year swap rate to 20.62 basis points.  Here 2dimGS/GS-RR has the lowest 

MAE of 13.85.  

 

5.2.2. Is the 2dimGS/GS-RR method statistically dominated by its competitors? 

We started our quest with seven challengers for the grid search originally suggested by Nelson and Siegel 

(1987). Looking back to Table 3, among the methods withheld, the 2dimGS procedure produces the 

lowest MAE among all 8 methods with an average MAE over all maturities of only 1.94 basis points. This 

can be explained by the flexibility this method provides. From Table 5 we recall that the MAE of the 

2dimGS/GS-RR procedure is 11.61 basis points for extrapolated 30-year swap rates. The second lowest 

MAE is generated by GS-RR, which is almost half of that of GS. Here our results are in line with Annaert 

et al. (2013) that ridge regression conditioned upon grid search can improve extrapolation quality of the 

Nelson-Siegel style models. Turning to the procedure’s ability to match and forecast the volatility, once 

again 2dimGS/GS-RR yields the lowest fitting errors in both cases. 2dimGS method, the most flexibility 

method of all, has a mean absolute fitting errors that is almost 16 basis points higher than that of 

2dimGS/GS-RR. This leads us to advance the 2dimGS/GS-RR procedure as the ‘optimal’ estimation 
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method for Svensson-type term structure models when extrapolation of long-term interest rates is of 

interest.  

Formally, we follow Ashley (1998) to run an MAE ratio test to measure the performance of these methods 

in capturing the long end of the yield curve. To test whether two series of MAE are statistically different 

from each other, we compute:  

 1

2

  Method

Method

MAE

MAE
   (3) 

where ߙ is the MAE ratio. If ߙ is significantly less than 1, then we consider Method 1 to be better than 

Method 2. Since the methods that we propose are not independent from each other and since we observe 

clustering in the MAE, we block-bootstrap absolute errors in pairs to calculate the Ashley test statistic. 4  

To do so, we first divide the block-resampled time series from Method 1 and Method 2 by 1MethodMAE  

and 2MethodMAE . Then we compute the MAE ratios. We resample 50 000 times and draw the distribution 

of the MAE ratio to compute the empirical p-value. In Table 7, negative spreads (i.e. α ൐ 1in the table) 

mean that the 2dimGS/GS-RR method has a lower MAE than the challenger. From Table 7 it is clear that 

2dimGS/GS-RR significantly dominates other models in all tests. Thus this method seems to be able to 

extrapolate long-term rates as well as fit and forecast their conditional volatilities.   

                                                      

4 The bootstrapped results are robust using various block sizes ranging from 15 up to 120. The optimal block size 
based on the algorithm of Politis and White (2004) varies from 80 to 120. Here we report results based on a block 
size of 50. 
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Table 7 Bootstrapped Ashley test (p-values in percentage, Spread in bps)  

Challenger GS GS-RR 2×GS 2dimGS 
2×GS-

RR 
2dimGS-

RR 
2×GS/GS-RR 

Panel A: The spread between the extrapolation errors 
Spread  
 ߙ

 p-value 

-15.40 
2.33 

(0.00) 

-1.90 
1.16 

(1.82) 

-36.13 
4.11 

(0.00) 

-6.51 
1.56 

 (0.00) 

-11.68 
2.01 

(0.00) 

-8.52 
1.73 

(0.00) 

-2.89 
1.25 

(0.32) 
Panel B: The spread between the student-t-EGARCH fitting errors 

Spread  
 ߙ

 p-value 

-10.73 
2.14 

(0.00) 

-2.65 
1.28 

(0.00) 

-64.15 
7.82 

(0.00) 

-15.78 
2.68 

 (0.00) 

-34.50 
4.67 

(0.00) 

-15.04 
2.60 

(0.00) 

-4.18 
1.44 

 (0.00) 
Panel C: The spread between the student-t-EGARCH prediction errors 

Spread  
 ߙ

 p-value 

-16.53 
2.19 

(0.01) 

-6.77 
1.49 

(0.09) 

-41.42 
3.99 

(0.00) 

-14.30 
2.03 

(0.00) 

-20.55 
2.48 

(0.00) 

-14.15 
2.02 

(0.00) 

-11.50 
1.83 

 (0.00) 
Note: We perform a blocked bootstrap (block size = 50) with 50 000 runs. The spread between the 2dimGS/GS-RR and the 
challenger is reported in the first row. The second row reports the ߙ as defined in Equation (3), and the empirical p-values (in 
percentage) are reported in brackets. 
 

6. Conclusion 

Annaert et al. (2013) propose to use ridge regression to estimate the Nelson-Siegel model in order to 

alleviate the multicollinearity problem embedded in the model. Their findings suggest that ridge-

regression based algorithm has superior power in extrapolating long-term rates. This paper explores the 

use of ridge regression as an alternative for curve-fitting the extended Nelson-Siegel model, the Svensson 

model. We find that, the ridge regression conditioned on both Nelson-Siegel and Svensson (2dimGS/GS-

RR) has consistently good performance in fitting the long end of the term structure of the yield curve itself 

and its volatilities, and in forecasting one-day ahead conditional volatilities. This promotes 2dimGS/GS-

RR as a good candidate among other Nelson-Siegel-Svensson estimation procedures to build the long end 

of the term structure of interest rates and the term structure of volatilities.  
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Appendix 1: Ridge Regression Implementation 

To overcome OLS parameter instability due to multicollinearity, we implement ridge regression. This 

estimation procedure can substantially reduce the sampling variance of the estimator, by adding a small 

bias to the estimator. Kutner, Nachtsheim, Neter and Li (2004) show that biased estimators with a small 

variance are preferable to the unbiased estimators with large variance, because the small variance 

estimators are less sensitive to measurement errors. We therefore use the ridge regression and compute our 

estimates as follows: 

   1* ,k
  β X X I X y


 (4) 

where k is called the ridge constant, which is a small positive constant. As the ridge constant increases, the 

bias grows and the estimator variance decreases, along with the condition number. Clearly, when k=0 the 

ridge regression is a simple OLS regression. 

As pointed out by Kutner et al. (2004), collinearity increases the variance of the estimators and makes the 

estimated parameters unstable. However, even under high collinearity, the OLS regression still generates 

unbiased estimates. As a result, we implement a combination of the grid search and the ridge regression 

using the following steps: 

1. Estimate the parameters using one of the proposed methods (GS, 2dimGS, or 2×GS) ; 

2. Calculate the condition number conditional on the ‘optimal’ estimates of the shape parameters ; 

3. Re-estimate the coefficients by using ridge regression only when the condition number is above 

10. The size of the ridge constant is chosen using an iterative search procedure that finds the 

lowest positive number k that makes the recomputed condition number fall below the threshold. 

Specifically, we start with k = 0 and we iteratively re-compute the condition number after 

increasing the ridge constant by 0.001. We stop iterating when the recomputed condition number 

is lower than 10. By adding a small bias, the correlation between the regressors decreases and so 

does the condition number.  


